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Off-target RNA mutation induced by DNA base 
editing and its elimination by mutagenesis
Changyang Zhou1,2,9, Yidi Sun2,3,4,9, Rui Yan5,9, Yajing Liu2,6,9, Erwei Zuo1,7,9, Chan Gu5, Linxiao Han1, Yu Wei1, Xinde Hu1,2,  
Rong Zeng3,6, Yixue Li5,6,8*, Haibo Zhou1*, Fan Guo5* & Hui Yang1*

Recently developed DNA base editing methods enable the direct 
generation of desired point mutations in genomic DNA without 
generating any double-strand breaks1–3, but the issue of off-target 
edits has limited the application of these methods. Although several 
previous studies have evaluated off-target mutations in genomic 
DNA4–8, it is now clear that the deaminases that are integral to 
commonly used DNA base editors often bind to RNA9–13. For 
example, the cytosine deaminase APOBEC1—which is used in 
cytosine base editors (CBEs)—targets both DNA and RNA12, 
and the adenine deaminase TadA—which is used in adenine 
base editors (ABEs)—induces site-specific inosine formation on 
RNA9,11. However, any potential RNA mutations caused by DNA 
base editors have not been evaluated. Adeno-associated viruses are 
the most common delivery system for gene therapies that involve 
DNA editing; these viruses can sustain long-term gene expression 
in vivo, so the extent of potential RNA mutations induced by DNA 
base editors is of great concern14–16. Here we quantitatively evaluated 
RNA single nucleotide variations (SNVs) that were induced by CBEs 
or ABEs. Both the cytosine base editor BE3 and the adenine base 
editor ABE7.10 generated tens of thousands of off-target RNA SNVs. 
Subsequently, by engineering deaminases, we found that three CBE 
variants and one ABE variant showed a reduction in off-target RNA 
SNVs to the baseline while maintaining efficient DNA on-target 
activity. This study reveals a previously overlooked aspect of off-
target effects in DNA editing and also demonstrates that such effects 
can be eliminated by engineering deaminases.

To evaluate the off-target effects of base editors at the RNA level, 
we transfected one type of CBE (BE3; APOBEC1–nCas9–UGI) or 
ABE (ABE7.10; TadA–TadA*–nCas9), together with GFP and with 
or without a single guide RNA (sgRNA) into cultured HEK293T cells 
(Fig. 1a, Extended Data Fig. 1). First, we validated the high on-target 
efficiency of DNA editing by both BE3 and ABE7.10 in these HEK293T 
cells using Sanger sequencing (Fig. 1b–e). We next performed RNA 
sequencing (RNA-seq) at an average depth of 125× on these samples 
(Supplementary Table 1). RNA SNVs were called from the RNA-seq 
data in each replicate separately, and any SNV identified in a wild-type 
sample was filtered out (Fig. 1a).

We found 742 ± 113 (mean ± s.e.m.) RNA SNVs in the GFP-alone 
control cells (Fig. 1f–h, Supplementary Table 2), but observed nota-
bly higher numbers of RNA SNVs in cells from the following sample 
groups: APOBEC1, BE3 without sgRNA, and BE3 with either site 3 
(see Methods) or ring finger protein 2 (RNF2) sgRNA (5–40 times 
that in GFP-only cells; Fig. 1f, h, Extended Data Fig. 2, Supplementary 
Tables 2, 3). Similarly, large numbers of RNA SNVs (5–10 times those 

in GFP-only cells) were also found in cells expressing only TadA–
TadA*, ABE7.10 without sgRNA, and ABE7.10 with either site 1 or 
site 2 sgRNA (Fig. 1g, h, Extended Data Fig. 2, Supplementary Tables 2, 
3). Notably, transfection of APOBEC1 or TadA–TadA* induced the 
greatest numbers of RNA SNVs compared to other transfected groups, 
which implies that increased SNVs in CBE- or ABE-treated cells are 
likely to be caused by overexpression of the deaminase APOBEC1 or 
TadA (Fig. 1f, g, Extended Data Fig. 2, Supplementary Tables 2, 3). 
Moreover, the number of off-target RNA SNVs was increased when 
higher levels of CBEs or ABEs were expressed (Extended Data Fig. 2).

Notably, nearly 100% of the RNA SNVs identified in BE3-treated 
cells were mutations from G to A or C to U; this level is significantly 
higher than that in the GFP-alone control cells (P = 2.03 × 10−10 for 
BE3, P = 0.017 for BE3–site 3 and P = 5.90 × 10−10 for BE3–RNF2) 
(Fig. 2a, c, Extended Data Fig. 3). This mutation bias was the same as 
that of APOBEC1 itself2, which indicates that these mutations were not 
spontaneous but rather were induced by BE3 or APOBEC1. Similarly, 
95% of the ABE7.10-induced mutations were A to G or U to C, consist-
ent with the action of TadA (Fig. 2b, c, Extended Data Fig. 3). We noted 
that the GFP group also exhibited bias towards A to G and U to C muta-
tions (Fig. 2c), probably owing to innate mutation preferences17–19. We 
observed 27.7 ± 3.6% (mean ± s.e.m.) or 51.0 ± 3.3% (mean ± s.e.m.) 
overlap between any two samples from the BE3- or ABE7.10-transfected 
groups, respectively, and these overlapping SNVs were substantially 
enriched for genes with high levels of expression (Fig. 2d, Extended Data 
Fig. 3). Additionally, we found that a consensus motif ACW (W = A 
or U) or TAW (W = C or T) typically occurred in BE3- or ABE7.10-
induced RNA SNVs, respectively (Fig. 2e). However, none of the off- 
target sites overlapped with predicted off-target mutations and we 
observed no similarities between the off-target and on-target sequences 
(Fig. 2d, Extended Data Fig. 4). Thus, the off-target RNA SNVs induced 
by the CBE and ABE were independent of sgRNA and caused by over-
expression of APOBEC1 and TadA–TadA*, respectively. By Sanger 
sequencing validation, we found that these SNVs could be detected only 
in RNAs and not in DNA (Extended Data Fig. 4). Moreover, the off-tar-
get RNA SNVs were found in both coding and non-coding sequences 
(a substantial percentage in 3′ UTRs and exonic regions for BE3 and 
ABE7.10, respectively; Extended Data Fig. 5). In addition, ABE7.10 
induced 56 and 12 non-synonymous RNA SNVs in oncogenes and 
tumour suppressor genes, respectively, and many of these showed an 
editing rate higher than 40%, raising concern about the oncogenic risk 
of DNA base editing (Extended Data Fig. 5, Supplementary Tables 4, 5).

Bulk RNA-seq is based on large pools of cells with variable editing. 
Thus, we performed single-cell RNA-seq to avoid the loss of random 
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off-target signals due to population averaging, on four groups of cells 
(wild-type, GFP-alone, BE3–site 3 and ABE7.10–site 1) (Fig. 3a). 
Consistently, we observed severe RNA off-target effects and similar 
mutation patterns in cells with high expression of deaminases, but 
not in cells with low deaminase expression (Fig. 3b–d, Extended Data 
Figs. 6, 7). Therefore, only cells with high expression of the indicated 

deaminase were used for further analysis (Extended Data Fig. 6). 
Notably, the percentage of off-target sites (4.5 ± 1.0%, mean ± s.e.m.) 
shared by any of the BE3- or ABE7.10-edited cells was much lower than 
that of the cell populations (40.8 ± 3.7%, mean ± s.e.m.), which indi-
cates that BE3- or ABE7.10-induced off-target SNVs were essentially 
random and independent of sgRNA (Extended Data Fig. 8). Notably, 
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Fig. 1 | Base editors induce numerous 
off-target RNA SNVs. a, Scheme of the 
experimental design. b, c, DNA on-target 
efficiency of BE3–site 3 and BE3–RNF2. Note 
that APOBEC1 is the cytosine deaminase 
of BE3. d, e, DNA on-target efficiency of 
ABE7.10–site 1 and ABE7.10–site 2. Note that 
TadA–TadA* (wild-type TadA–evolved TadA 
heterodimer) is the adenine deaminase of 
ABE7.10, and evolved TadA is indicated  
by TadA*. f, g, Comparison of the off-target 
RNA SNVs for BE3 and ABE7.10 groups.  
h, Representative distributions of off-target 
RNA SNVs on human chromosomes for GFP, 
BE3 and ABE7.10. Chromosomes are indicated 
with different colours. Right, number of RNA 
SNVs for each chromosome. GFP group serves 
as control for all comparisons. WT, wild-type; 
GFP, GFP only; APOBEC1, APOBEC1 only; 
BE3, BE3 only; BE3–site 3, BE3 with sgRNA 
targeting site 3; BE3–RNF2, BE3 with sgRNA 
targeting RNF2; TadA–TadA*, TadA–TadA* 
only; ABE7.10, ABE7.10 only; ABE7.10–site 1,  
ABE7.10 with sgRNA targeting site 1; 
ABE7.10–site 2, ABE7.10 with sgRNA targeting 
site 2. All values are presented as mean ± s.e.m. 
Number above the bar indicates the number of 
biologically independent samples. *P < 0.05, 
**P < 0.01, ***P < 0.001, two-sided 
unpaired t-test. Exact P values are provided in 
Supplementary Table 3.
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some oncogene and tumour suppressor sites remained highly edited at 
specific sites, as in the bulk RNA-seq datasets, which implies that the 
editing might be directed to specific sequence motifs (Fig. 3e, Extended 
Data Fig. 8, Supplementary Tables 6, 7).

To further explore experimental approaches that may eliminate the 
RNA off-target activity of base editors, we examined the potential effect 
of de-stabilizing the RNA binding capacity of APOBEC1 and TadA 
(Extended Data Fig. 9). Specifically, we introduced a point mutation 
W90A to the predicted hydrophobic region in APOBEC120,21, and 
found that although BE3W90A eliminated the RNA off-target effect, 
the on-target DNA editing activity of BE3W90A was essentially absent 

(Fig. 4a, b, Extended Data Fig. 9, Supplementary Tables 8, 9). A previous 
study has shown that double mutations to BE3 (W90Y and R126E) 
can increase the editing specificity by reducing the hydrophobicity and 
binding affinity for DNA22, which implies that BE3W90Y/R126E might 
also show reduced RNA-binding activity. The RNA off-target effect 
of BE3W90Y/R126E was reduced to a base level, but it maintained BE3-
like DNA on-target efficiency. In an alternative approach, we tested 
whether replacing APOBEC1 with human APOBEC3A (hA3A)—
which is reported to have DNA but not RNA binding activity5,23—could 
eliminate the RNA off-target activity of BE3 (Extended Data Fig. 9). 
Indeed, BE3(hA3A)-transfected HEK293T cells showed significantly 
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fewer off-target RNA SNVs than BE3(APOBEC1)-transfected cells 
(Fig. 4a, b, Extended Data Fig. 9, Supplementary Tables 9, 10). To fur-
ther reduce off-target effects, we introduced point mutations R128A24 
and Y130F23,25 into the predicted RNA and single-stranded DNA 
binding domains of hA3A, respectively, and found that the number 
of off-target RNA SNVs in both variants was decreased to the base 
level (Fig. 4a, b, Extended Data Fig. 9). Notably, the mutation patterns 
for three high-fidelity variants—BE3W90Y/R126E, BE3(hA3AR128A) and 
BE3(hA3AY130F)—were similar to those found in cells transfected with 
GFP alone (Extended Data Fig. 9).

For ABE engineering, previous studies have shown that a D53E muta-
tion can reduce the RNA activity of TadA in vitro, and an F148A mutation 
completely abolished the activity in Escherichia coli9,11,26,27. We there-
fore introduced a D53E or F148A mutation into both TadA and TadA* 
(Extended Data Fig. 9). Notably, both ABE7.10D53E and ABE7.10F148A 
maintained high DNA on-target efficiency, and only ABE7.10F148A 
showed a complete absence of RNA off-target effects (Fig. 4c, d, Extended 
Data Fig. 9, Supplementary Tables 8, 9). Moreover, the remaining SNVs 
in ABE7.10F148A-transfected cells in both sites were similar to those found 
in cells transfected with GFP alone (Extended Data Fig. 9). We further 
confirmed that the DNA on-target activity of ABE7.10F148A was similar to 
that of ABE7.10 on three additional sites (Fig. 4e). The editing window of 
ABE7.10F148A was substantially narrowed (Fig. 4f, Extended Data Fig. 10), 
which indicates increased precision of DNA base editing. To determine 
whether the off-target RNA editing was due to the wild-type TadA mon-
omer, we examined the editing activities by catalytic inactivation of only 
the wild-type monomer (via an F148A mutation), and found that this 
variant maintained DNA on-target activity but could not decrease the 
number of RNA SNVs (Extended Data Fig. 10).

We have shown that BE3 and ABE7.10 generated substantial off- 
target RNA SNVs, consistent with three recent studies28–30. Although 
RNA off-target mutations could exist for only a short period of time by 
transient expression of base editors via ribonucleoprotein or nucleo
fection, in vivo genetic correction of the most common inherited  
diseases depends greatly on the delivery system: adeno-associated 
viruses, which maintain long-term gene expression14,16. Thus, contin-
uous induction of tens of thousands of off-target RNA SNVs for months 
or even years could be highly risky in gene therapies. Here, we intro-
duced point mutations to the deaminases and obtained high-fidelity 
variants for both CBEs and ABEs. Notably, recent reports have shown 
that CBEs, but not ABEs, induce substantial DNA off-target effects7,8. 
Thus, ABE7.10F148A could potentially be used for highly specific DNA 
base editing without off-target effects on DNA or RNA.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1314-0.
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Methods
sgRNA and vector information. All gRNA and vector sequences are provided in 
Supplementary Tables 10, 11.
Transient transfection and sequencing. Plasmids were constructed using 
NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) according to 
the standard protocol. HEK293T cells (Cell Bank of SIBCB, CAS) were authenti-
cated by the supplier and free of mycoplasma contamination. Mycoplasma contam-
ination was determined by PCR of the supernatant of HEK293T cells. HEK293T 
cells were seeded in 10-cm dishes and cultured in Dulbecco’s modified Eagle’s 
medium (DMEM, Thermo Fisher Scientific) supplemented with 10% FBS (Thermo 
Fisher Scientific) and penicillin–streptomycin at 37 °C with 5% CO2. Cells were 
transfected with 30 μg plasmids using Lipofectamine 3000 (Thermo Fisher 
Scientific). Three days after transfection, cells were digested with 0.05% trypsin 
(Thermo Fisher Scientific) and prepared for FACS. GFP-positive cells were sorted 
and kept in DMEM or Trizol (Ambion) for determination of DNA base editing or 
RNA-seq. To determine the efficiency of DNA base editing, cells were lysed using 
One Step Mouse Genotyping Kit (Vazyme) and subsequently prepared for Sanger 
sequencing and quantified using EditR 1.0.8 (https://moriaritylab.shinyapps.io/
editr_v10/). All experiments in Figs. 1b–e, 4a–d were performed simultaneously. 
Thus, data for GFP and BE3–site 3 at the site 3 locus were used in Figs. 1b, 4a, 
and data for GFP and ABE7.10–site 1 at the site 1 locus were used in Figs. 1d, 4c. 
For RNA-seq, ~500,000 cells (top 5% GFP signal) were collected and RNA was 
extracted according to the standard protocol. For library construction, mRNAs 
were fragmented and converted to cDNA using random hexamers or oligo(dT) 
primers. The 5′ and 3′ ends of cDNA were ligated with adaptors, and correctly 
ligated cDNA fragments were enriched and amplified by PCR. The concentration 
of the library was assessed using Bioanalyzer.
RNA-editing analysis by RNA-seq. We used fourteen groups of transfected cells: 
cells that expressed only GFP (36 h and 72 h), APOBEC1 or TadA–TadA*, cells that 
expressed BE3, BE3 with site 3 sgRNA (36 h and 72 h), BE3 with RNF2 sgRNA2, 
BE3 (FNLS)31 with site 3 sgRNA, ABE7.10, ABE7.10 with site 1 sgRNA (36 h and 
72 h)3, ABE7.10 with site 2 sgRNA and ABEmax32 with site 1 sgRNA (Extended 
Data Figs. 1, 2).

High-throughput mRNA sequencing was carried out using Illumina Hiseq 
at mean coverages of 125×. FastQC (v.0.11.3) and Trimmomatic (v.0.36)33 were 
used for quality control. Qualified reads were mapped to the reference genome 
(Ensemble GRCh38) using STAR (v.2.5.2b)34 in two-pass mode with the param-
eters implemented by the ENCODE project. Picard tools (v.2.3.0) was then 
applied to sort and mark duplicates of the mapped BAM files. The refined BAM 
files were subject to split reads that spanned splice junctions, local realignment, 
base recalibration and variant calling with SplitNCigarReads, IndelRealigner, 
BaseRecalibrator and HaplotypeCaller tools from GATK (v.3.5)35, respectively. 
To identify variants with high confidence, we filtered clusters of at least five SNVs 
that were within a window of 35 bases and retained variants with base-quality score 
>25, mapping quality score >20, Fisher strand values >30.0, qual by depth values 
<2.0 and sequencing depth >20. As the mRNAs were converted into cDNA before 
sequencing, both the nucleotide and its complementary base could be sequenced. 
For example, if there is a C in the mRNA, cDNA have both C and G at the specific 
site. When the reference genome was C, the sequence would be read as C, and if 
the reference was G at the site, G will be read oppositely. Therefore, we counted 
the sum of C to T + G to A mutations as the editing of BE3 and the sum of A to G 
+ T to C for ABE7.10 editing.

Any confident variants found in wild-type HEK293T cells were considered to 
be SNPs and were filtered out from the GFP and base-editor-transfected groups 
for off-target analysis. The editing rate was calculated as the number of mutated 
reads divided by the sequencing depth for each site. To analyse the predicted var-
iant effects of each off-target variant, we conducted variant annotation by Variant 
Effect Predicitor (VEP, v.94) with the GRCh38 database.

RSEM (v.1.2.21) was used to estimate the gene-expression levels on the align-
ment file with default parameters36 and gene abundances were reported in TPM 
(transcripts per million kilobases). The off-target RNA SNVs identified in BE3- or 
ABE7.10-transfected cells were mapped to the gene level. We randomly selected 
the same number of genes from the transcriptome in each sample as that of the 
off-target SNVs, and then compared the expression levels between the two groups 
with log2-transformed TPM values.

The adjacent 3-bp sequences of the off-target RNA SNVs were extracted from 
the reference and subjected to motif prediction using WebLogo3 (http://weblogo.
threeplusone.com/)37.

All sequencing data have been deposited in the NCBI Sequence Read Archive 
(SRA) under project accession PRJNA528149.
Library construction for full-length RNA-seq from single cells. Individual 
human HEK293T cells were manually picked after FACS, lysed and subjected to 
cDNA synthesis using the Smart-seq2 protocol38. Single-cell cDNA was then ampli-
fied and fragmented as previously described38,39. The sequencing library was con-
structed (New England Biolabs), quality checked and sequenced with paired-end 
150-bp reads on an Illumina HiSeq X-Ten platform (Novogene). We performed 
single-cell RNA-seq from 96 individual HEK293T cells, among which 16 were 
generated from single wild-type cells, 16 were generated from single GFP+ cells, 
32 were generated from single BE3–GFP+ cells, and 32 were generated from single 
ABE–GFP+ cells. After the quality check of all the libraries, 91 single-cell libraries 
passed our criteria and were subjected to deep sequencing. All the sequencing data 
were deposited in the SRA under PRJNA528561.
Processing of the single-cell RNA-seq data. Raw reads of single-cell RNA-seq 
data were first trimmed and aligned to the GRCh38 human transcriptome (STAR 
v2.5.2b)34. After de-duplication, RNA SNVs from individual cell were identified 
using GATK software (v3.5)35. Those SNVs detected in single cells with read 
depth ≥ 20.0, Fisher strand values ≤ 30.0 and qual by depth values ≥ 2.0 were 
retained for downstream analysis. Gene expression was quantified as log2(frag-
ments per kilobase of transcript per million mapped reads (FPKM) + 1) using 
HTSeq (v0.10.0)40. On average, 10,932 RefSeq genes were detected in each single 
cell by about 6.07 million sequenced reads (Supplementary Table 12).
Statistical analysis. All values are shown as mean ± s.e.m. Unpaired Student’s t-test 
(two-tailed) was used for comparisons and P < 0.05 was considered to be statisti-
cally significant. Details of statistical values are provided in Supplementary Tables. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
All the sequencing data have been deposited in the NCBI SRA under project 
accession numbers PRJNA528149 and PRJNA528561 or at http://www.biosino.
org/node/project/detail/OEP000277. All materials are available upon reasonable 
request.
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Extended Data Fig. 2 | Increased expression of deaminases induces an 
increase in off-target RNA SNVs. a, Representative distributions of  
off-target RNA SNVs on human chromosomes for APOBEC1, BE3–site 3, 
BE3–RNF2, TadA–TadA*, ABE7.10–site 1 and ABE7.10–site 2.  
b, Schematics of BE3(FNLS) and ABEmax. Note that BE3(FNLS)31 and 
ABEmax32 have previously been reported to greatly increase the expression 
of base editors. c, Expression of APOBEC1 in cells transfected with BE3–
site 3 for 36 or 72 h, or with BE3(FNLS)–site 3 for 72 h. d, Expression 
level of in cells transfected with ABE7.10–site 1 for 36 and 72 h, or with 
ABEmax–site 1 for 72 h. e, The number of off-target RNA SNVs in cells 

transfected with BE3–site 3 for 36 or 72 h, or with BE3(FNLS)–site 3  
for 72 h. f, The number of off-target RNA SNVs in cells transfected 
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the bar indicates the number of biologically independent samples. 
*P < 0.05, **P < 0.01, ***P < 0.001, two-sided unpaired t-test. Exact  
P values are provided in Supplementary Table 15.
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Extended Data Fig. 5 | Biotypes and tumour-associated genes of off-
target RNA SNVs. a, Percentages of different locations of SNVs for 
GFP, BE3 (BE3, BE3–site 3 and BE3–RNF2) and ABE7.10 (ABE7.10, 
ABE7.10–site 1 and ABE7.10–site 2) groups. All values are presented as 
mean ± s.e.m. n denotes biologically independent samples. *P < 0.05, 
**P < 0.01, ***P < 0.001, two-sided unpaired t-test. Exact P values are 

provided in Supplementary Table 16. b, Editing rate of BE3-induced non-
synonymous mutations located on oncogenes and tumour suppressor 
genes. c, Editing rate of ABE7.10-induced non-synonymous mutations 
located on oncogenes and tumour suppressor genes. Gene names, amino 
acid mutations and single nucleotide conversions are indicated by blue, red 
and green, respectively.
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Extended Data Fig. 6 | Expression of transfected vectors and mutation 
types of off-target RNA SNVs in single cells. a, Expression of GFP, 
APOBEC1 and TadA–TadA* was quantified in all sequenced single 
cells. Thresholds are indicated by blue dashed lines. Thresholds of log2 
(FPKM + 1) for GFP, BE3 and ABE7.10 are 0.3, 1 and 0.3, respectively. 
Cells with expression levels higher than the threshold were included 
for further analysis. b, c, Cells with high expression of TadA–TadA* 
or APOBEC1 showed greater numbers of RNA SNVs than those with 
low expressions in the ABE7.10 (n = 9 cells) or BE3 group (n = 4 cells), 
respectively. Box-and-whisker plots: centre line indicates median value, 

box represents first and third quantile, whisker indicates maximum and 
minimum values. d, Distribution of mutation types for GFP-transfected 
single cells (n = 16 cells). e, Distribution of mutation types for BE3–site 
3-transfected single cells (n = 31 cells). Cells with expression of APOBEC1 
higher than the threshold are included in the red square. f, Distribution 
of mutation types for ABE7.10–site 1-transfected single cells (n = 28 
cells). Cells with expression of TadA–TadA* higher than the threshold 
are included in the red square. The number indicates the percentage of a 
certain type of mutation among all mutations. SC, single cell.
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Extended Data Fig. 7 | Distribution of off-target RNA SNVs on human 
chromosomes for all single cells with expression above thresholds. 
a, Distribution of off-target RNA SNVs on human chromosomes for 
GFP-transfected single cells (n = 15 cells). b, Distribution of off-target 

RNA SNVs on human chromosomes for BE3–site 3-transfected single 
cells (n = 4 cells). c, Distribution of off-target RNA SNVs on human 
chromosomes for ABE7.10–site 1-transfected single cells (n = 9 cells).
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Extended Data Fig. 9 | Characteristics of off-target RNA SNVs for 
engineered BE3 and ABE7.10 variants. a, Schematic of BE3 and ABE7.10 
variants. Point mutations are indicated by red lines. b, Representative 
distributions of off-target RNA SNVs on human chromosomes.  
c, Distribution of mutation types for each sample of the engineered 

variants of BE3 and ABE7.10. d, Ratio of shared RNA SNVs between any 
two samples in the engineered variants of BE3 and ABE7.10 or with off-
target sites predicted by Cas-OFFinder. The proportion in each cell was 
calculated by the number of overlapping RNA SNVs between two samples 
divided by the number of RNA SNVs in the row.
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Methodology

Sample preparation HEK293T cells were digested by trypsin (0.05%), contrifuged at 1000 rpm and filtered with a 35 μm nylon mesh. 

Instrument MoFlo XDP (Beckman) 

Software Summit Software version 5.2, FlowJo X.

Cell population abundance Cell population abundance: Cell population abundance was influenced by the size of the plasmids. Normally, HEK293T cells 
transfected with plasmids were usually ~60% GFP+ and around 500000 cells were sorted for RNA-seq.

Gating strategy Positive and negative boundaries were determined by control cells that were not transfected with any plasmids. Cells with top 
5% of GFP signal were collected.
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